STEADY-STATE TEMPERATURE FIELD OF A DISC
WITH CONVECTIVE HEAT TRANSFER AT
ITS SURFACE

G. E. Klenov UDC 536,242

The mixed problem with axial symmetry is solved approximately, with boundary conditions
of the third kind specified at the disc surface.

For the solution of many problems in the theory of heat conduction it is necessary to determine the
steady-state temperature field of a disc in an infinitely large homogeneous medium under conditions of con-
vective heat transfer between them. Such a problem is equivalent to the problem of a half~space with a
circle of unit radius on its boundary where conditions of the third kind are satisfied and the remainder of
the boundary thermally insulated, this problem to be solved by integrating the Laplace equation
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with the following boundary conditions (defined in dimensionless form):
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where k = 1/Bi > 0.

The well known solution to this problem [1] involves the necessity of evaluating the Fredholm integral
equation of the second kind with respect to some auxiliary function, which considerably limits the feasibility
of even a numerical analysis. In view of this, we will solve the problem by the method of characteristic
surfaces {2], by which it can be reduced to the mathematical model shown in Fig. 1b.

In order to find the temperature distribution T(r, z) within the given region', we will consider the
auxiliary problems of determining the functions T;(r, z) and Ty(r, z), which are harmonic in the respective
subregions 2y: {0<r<w, z>0}and Qp: {0<r <1, —k <z <0}, with the following additional conditions
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Assuming that the distribution of the normal derivative at the interface between subregions 24 and &, (i.e.,
in the plane z = 0, r = 1) is equal to some as yet unknown function
aT
0z

=f@),

2==0
r<1

we will write the boundary conditions for the auxiliary functions Ty{r, z) and To(r, z} as
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TFig. 1. Schematic diagram for specifyihg the bound-
ary conditions: (a) prototype system, (b) auxiliary
mathematical model.
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The expression for Ty is, as can be easily verified,
T, = [ A() hexp(—A2) I, (br) dh, (9)
0
with
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and
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0 0
The solution in subregion Q4 is written in the form
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with o, denoting the roots of the equation J;(ay) = 0.

Taking into account the continuity of function T(r, z) at z = 0, r = 1 (condition (5)), we find from (10)
and (11)

@
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we reduce (12) to

1 o
2 ’ dt
o j'f(p) pdp Oj VR—By g —F =—£0) (129

0

where

Oy, Jo (an)

Changing the order of integration in (12') from the left will yield the equation

1 @ 1
g0)=1742 [ 16)0dp -+ 2 EM j F(6) Jo () odp.
0 hy

n=1

1

1
2t dt " _f@edo
x ) VA=r 5 A 13)

e
This equation can be solved by a subsequent application of the inversion formula for the Abel integral equa-
tion (see, e.g., [4]):

j‘ d j rg(r) dr
Vtz_p Ta ) VE=E (14)

Multiplying now both sides of (14) by Jglaype) (m =0, 1, 2, ... and @y = 0 when m = 0) and integrating with
respect to p from 0 to 1, we obtain, after the necessary mathematlcal operatmns [3], the following infinite

of (p) =

system of algebraic equations for the constants 3, = s f(p)odp and By = f f(p)Jylan o) pdp.
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For the purpose of further analysis, it will be more convenient to transform system (15) to
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It is evident here that the sum of the squares of the diagonal coefficients in the infinite system of al-
gebraic equations satisfy the following inequality:
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i.e., one can solve system (16) by the reduction method and one can estimate the accuracy of the approxi-
mate solution, as long as 1 is not an eigenvalue of the system [5]. The original problem is then solved
without difficulty by a successive application of formulas (16) and (11),

The result obtained so far yields only a numerical solution to the problem, however, which is not
very useful for a direct analysis. In view of this, it becomes worthwhile to consider an approximate meth-
od of determining the temperature field of the system in Fig. 1b which will yield a rather simple analytical
solution.

For this purpose, wedefine the temperature distribution in the z = 0, r = 1 plane in terms of a power
series

N
TO, Nrc1=5() = 2 a,re. (17)
) .

The expression for Ty(r, z) can then be written as
N
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The solution for Ty(r, z) is given by formula (9), where A(A) = B(x)/A is found by solving the pair of in-
tegral equations

[BMLOna =10, <L,
0

f ABNJy(Ar)ydr =0, r>1,

0
with the boundary condition for Ty(r, 0) at r > 0 taken into account.

The solution to these equations is obtained by the substitution [6];
1 .
B(}) = 5{;) (f) cos Aedt, 19)
0
where
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For the determination of the unknown coefficients oy, one must use condition (4), which is satisfied
at N + 1 points selected in some manner. In order to simplify the calculations and improve the accuracy,
however, it is worthwhile to determine the coefficients from the condition of equal thermal fluxes imping-
ing on definite segments of theinterface between subregions £, and Q:

Q)= Qo) (=12 ..., N+1), (21)

(20)

where

0
Qi(p;) = —2n ‘ o, | rdr (j=1, 2). (22)
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For instant, for Q one easily obtains the expression
0c

Q (p) = 2m H @O+ H]_‘Vtzt—pz |e@a], (23)
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TABLE 1. Coecfficients ay and a, for Various Values of Parameter

k
P
k 04 | 0,6 | 0.8 0.4 0.6 0,8
a, —a,
0,02 | 0,9958 0,9988 ' 0 9993 06,0407 0,0465 0,0502
0,06 0,9601 0,9652 ’ 0,9791 0,0611 0,0710 0,0983 .
0,1 0,9338 0,9375 | 10,9573 0,0903 0,0973 0,1345
0,5 0,6768 0,685 - 0,688 0,1157 0,1294 0,1349 .
1,0 0,4921  0,4937 0,4939 0,0885 0,0989 0,099 -
2,0 0,319 ] 0,320 0,321 0,0575 0,0648 0,0642

derived using the value of the discontinuity integral

S cos MJ, (ko) dh = L for £<Cp,
. Y

=p[yE—g(t -y F—p?)]" for t>p.

Expression (23) becomes much simpler for p; =1, With a form of function x{r) specified and with
the relations in [3] taken into account, it becomes

+1)

0 m=0
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m==0 2 H 9 )

We will now retain only the first three terms in expression (17), while obviously a; = 0 from sym-
metry considerations,

(24)

%) = a, + a,r*.

Equating pairwise the expressions for the total fluxes per area elements r = 1 and r = p; in the
auxiliary problems of internal and external heat transfer based on formulas (22), (23), and (24), we arrive
at the following system of equations for the unknowns a, and aj:

4k 1 sk
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For k = 0 system (25)-(26) has a unique solution a, = 1 and a5 = 0 at every p;€ (0.1), i.e., we have
arrived at the original problem with k = 0,

Knowing the values of the coefficients, it is not easy to determine the temperature distribution within
the entire half-space z = 0. Thus, for the temperature field along the disc axis we have

TO, 2)=~T,|=0 = 2 [(ab — 2a,2) arctg—l— -+ 20,2 ] , (27)
S om z

and at z =0

T(r, OV~ T o= 2 [(&0 -+ ) arcsin —— —a, YA 1 J . (28)
r>l k14 r }

It is to be noted that, by finding the coefficients ay, (for instance, @4 and a, from Egs. (25)-(26)) at
various values of pj, one can, at the same time, indirectly estimate the accuracy of the obtained approxi-
mate solution for the mathematical model in Fig. 1b without comparing it with the results based on exact
formulas or with the results of temperature field simulation. Some results of these calculations for var-
ious valucs of parameter k are given in Table 1,
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We note, in conclusion that the potential distribution across a disc planc at k > 1 may, with great
accuracy, be assumed uniform. In this case the expression for the temperature becomes

T~ 2 arcsin ,_____\2 —— s | (29)
a -4k Yy (L —rf 2 (1 =)= 2

The same expression can be easily obtained from the solution to system (15), if only the first term
is sought and all other terms are disregarded, i.e.,

2 1
Bo = — P I
I k14

NOTATION
T " is the temperature;
Bi is the Biot number;
Qj is the total thermal flux;
Jos Jq are the Bessel functions, of the zeroth and of the first order;
Fla, B, v, 7) is the hypergeometric function;
B(x, y) is the beta function;
T (2) is the gamma function;
f,g, A, B, y,¢ are the function symbols;
T,z are the cylindrical coordinates;
Ap,t are the variables;
Bn» Yns %m are the unknown coefficients.
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